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Abstract

We examine the relationship between the filter and the subgrid-scale {SGS) model for large-eddy
simulations, in general, and for those with dynamic SGS models, in particular. From a review of the . -
literature, it would appear that many practitioners of LES consider the link between the filter and the .. .
model more or less as a formality of little practical effect. In contrast, we will show that the filter and
the model are intimately linked, that the Smagorinsky SGS model is appropriate only for filters of first- -
or second-order, and that the Smagorinsky model i% inconsistent with spectral fllters. ' Moredver; the - °
Germano identity is shown to be both problemati¢c and unnecessary for the development of dynamic '
SGS models. Its use obscures the following fundamental realization: For a suitably chosen filter, the
computible resolved turbulent stresses, properly scaled, closely approzimate the SGS stresses.

1 Introduction

By definition, direct numerical simulation (DNS) is the numerical solution of the Navier-Stokes equatxons
without recourse to empirical models. In concept, the fluid motions are resolved down to the Kolmogorov
length scale, at which eddies succumb to viscous dissipation. In general, the computational workload for
fully-resolved DNS scales as Re3, where Re is the Reynolds number. Consequently, for the complex, high-
Reynolds-number flows of engineering mterest the computational requirements DNS are staggenng and
prohibitive.

In contrast, in large-eddy simulation (LES), the larger scales of motion are resolved in space and time
on a moderately coarse grid; however, the effect of the subgrid-scale (SGS) motions on the evolution of the
larger scales is modeled. In practice, the decomposition into resolved and unresolved scales is accomplished
by a spatial (temporal) filtering operation with an associ cutoff length (time) scale A.

First introduced in the 1960’s, LES has experienced airesurgence of interest since 1991, when dynamic
SGS modeling was proposed by Germano and coworkersS. The advantages and difficulties associated with
dynamic SGS models are now well established, and space does not permit elaboration. However, it is fair to
say that the promise of dynamic modeling has not been fully realized largely because many of the proposed
fixes to the shortcomings of dynamic models involve consulerable additional complexity and computational
overhead.

Here, our purpose is to examine the connection between the choice of the filter and the subgrid-scale
(SGS) model, with an eye toward the simplification of dynamic SGS models.

From a review of the literature, it would appear that many practitioners of LES consider the link between
the filter and the model more or less as a formality of little practical effect. Surprisingly little is written
on this topic, Piomelli et al.? and Aldamal excepted. Specxﬁca.lly, regardmg the conventional practice of
LES, Piomelli et al.9 observed: “In the past, however, the choices of model and filter have been regarded as

- completely independent.” Recognizing that the ‘behavxor ‘of the SGS model strongly depends on the choice of
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the filter, they attempted to address the issue of filter-model consistency on the basis of physical arguments
and a priori tests, which involve comparisons of the exact and modeled SGS stresses computed by fully
resolved DNS. Here, we approach filter-model consistency from a mathematical point of view. From the
present analysis come a number of revelations, some of which run counter to ‘conventional wisdom.

In the next section, we discuss aspects of linear filters in general, focusing on their order properties. In
the third section, starting from the Germmidentity and in the context of a dynamxc SGS model we derive

without first appealing to the Germano,l ity In the ﬁfth sect.ion, we briefly discuss the implications of
these results. Conclusions are aummanz'ed in the final section. -

2 Linear Filter Operators

Like differential operators, filter operators may bé élther continuous or discrete. Here, for brevity, we

consider only continuous filters (which-are also referred t6 25 *anal ""'1»:), ‘however, the conclusionsdrawn for
contmeusﬁlteugencnﬁzeimmedhtelytoﬂmummm reovel alsoferbrenty,wecon@only
time-domain filters. Howevet, the it mshmﬂd sppiy o8 '

Let f(t, i') bea oontinous funetm‘ _ and agm andJet A, ;he “wzndow width denote a charac-
teristic time scale-associated with the temparal linear fiter F{f(t), A]. As a specific. example, consider the
continuous, causal filter given by the integral equation

| FU®,8= [;f(r,andr 0

From first principles of the Calculus, it is readily shown that lima ..o F[f(t), A] = £(¢). On the other hand,
for a finite window A, the time-domain filter above tends to remove oscillations of high frequency relative
to A while preserving low-frequency oscillations, which defines a “low-pass” filter. For applxcauons to LES,
we consider only low-pass filters.

_ The effect of » filter is most apparent.inl‘baﬁam ’Baeachﬁlteusassoaated a transfer functien
H(Q) that quantifies the amplitude and phase effects of the fllter on. oscillations of dimensionless frequency
0 = wA. For example, the transfer function associated with Eq. 1, shown in Fig. 1, is readily obtained
by directly integrating F(e**, A) for arbitrary w. Figure 1 reveals some undesirable traits of the filter: the
amplitude decay is not monotonic, the amplitude envelope decays slowly (like 1/9), and, consequently, the
cutoff is gradual.
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Apin by analogy to difference operators, to each ﬁlte: qgerator is mocmted an order-propmy that
quantifies the behavior of the filter as 0 tends toward zero. The order property is revealed by the le
non-zero term in A in the Taylor-series expansion of the ﬁlter. For example, for a function of time only, the
Taylor-series expansion with respect to A of the filter of Eq.' 1 fs )

Ff@®),a]= f(t)-—f'(t)+ f"(t)+0(133) " (2




A class of causal time-domain filters more suitable for LES than Eq. 1 is that of the so-called Butterworth
filters. Figure 2 compares the moduli of the transfer functions of prototypical Butterworth analog (BA) low-
pass filters of orders 1, 2, and 4, each of which has a nominal cutoff frequency 1, = 1. The properties and
design constraints of the ﬁrst- and second-order low-pass BA prototypes can be found in Strum and Kirk12.
The fourth-order BA prototype was developed by the author using Mathematica. The prototype BA filters
shown in Fig. 2 are readily discretized and adapted to an arbitrary cutoff Q..
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The order of a filter is closely related to the flatness of its transfer function at Q = 0. In general, for-a
filter of order n, H®)()|g=0 = 0 for all 0 < k < n, but H™+1(0) # 0. In particular, Butterworth filters
‘manifest several desirable properties for applications to LES: 1) stability, i.e., |H((2)| < 1; 2) their transfer
functions decay monotonically with increasing €, and 3) their transfer functlons are, ma.xmm.lly flat near
1 = 0. For comparison, Fig. 2 also presents the 1dea.hzed transfer function of an analog spectral filter, which
can be considered of infinite order.

For brevity in future discussions, let an overbar denote filtered quantities; that is, f F[f(t),A] for
some fixed A. From Figs. 1 and 2 it can be inferred that, except for the spectral filter, f # . It is also
clear that the spectral ideal is more closely approximated as the order n increases. As a regult, hxgb-order
temporal filters are problematic for practical applications to LES, because they necessitate the storage of
relatively more time history. This may be a principal reason that, to date, time-domain filtering has been
a.vmded by practitioners of LES, as hinted by Moin and Junenez in their survey paper.

. 'One might naively assume (as did the author originally) that higher order is better. One of the more

significant results of this work is to show that, in the context of LES, lower order filters are desirable for

several reasons. This is particularly good news if one wants to consider the application of time-domain filters
to LES, for example, as in Pruett10,

To develop the results of the next sections, we make use of the Taylor series expansions of filter operators.
For example, recall Eq. 1 above. More generally, assuming sufficient differentiability of u, any time-domain
filter can be expanded as

i(t, £,A) = u + 1A’ + A% + ;A% + .. 3)

where pnmu denote temporal partial derivatives. For spatially multi-dimensional filter operators, sumlar
‘expansions could be derived; however, their Taylor expansions would, of course, be multi-dimensional. In
general, a filter is of order n in A provided ¢, # 0, but c¢x = 0 for 1 < k < n. Thus, Eq. 1, for example,
defines a first-order filter. Similarly, one can show that both Gaussian and tophat physxcal-space ﬁlters are
first order. :

3 Conventional Dynamic SGS Modeling

In tensor notation, the linearly filtered Navier-Stokes equations are given by

du; _
3_3:,- = 0 (4)
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where repeated indices imply summation, and 74 is the SGS (residual) stresa tensor defined as
RS T.J -—EI‘IJ m Cige : -"" (6)

Equation 6 is exact; inexactness enters only when the Tij are modelad. We focus now on dynamu: modeling
of the residual stresses.

Dynamic models® of the SGS stress tensor are rooted in th¢ Gérmano® identity and tygxcally exploit
successive (spatial) “grid” and “test” filtering operations with amciated length scales ! and I, respectively.
To transition to temporal filtering, we explicitly assume that R ‘= f = r, where r > 0 is' a parameter.
Typically, r ='2. The Germano identity relates the resolved t ent stress tensor L;; and the “subgrid”
and “subtest” stress tensors, 7;; and Tj;, respectively. Specifically, ,

Liy=Ty -5 ™
where o T
Li; =08, - 0T, (8)
and RS
- Ty "ﬁiui ‘@? 2 S -0
TheGermmoidentity uact, ‘gioreover, its left-hand side is éomp ble. Tt remainstomodele@ofthe

terms on the right-hand nfde which is frequently aceomphshad ) Tixé Smagotinsky eddy-viscosity model
namely

;'-36¢m.zzct’|3|3;, | )

Here, 8 is the Kroneckerdéka, F,j is the resolved-scale strain-rase tensor 3' = 23;3?;3, lis the char-
'”'scalemocla.tedwiththegﬁdﬂlter,andf)” shstant of primar;
general a criticism of eddy-viscosity models is their implicit \p
ual stress and the resolvod-scale sf.ram-rate tensors are ahgned ;
experiment that examined turbulent three:
mmmmmmmm hifte i-mh&WWW They
concluded that eddy-visebaity models are inappropriate for such flows. Moin and Jimenez® propose a more
generally applicable model, for which each stress-tensor component has its own coefficient, namely

75 % (CaSay + CinSu) S| = %(—Cuﬂu 4;051-/9“) | (11)

where

=238, . | (12)

We will refer to Eq. 11 as the genemll:ed reudual-stress model,” The generalized resldual-stress tensor is
symmetric; hence, six _: 0 its must be de!:nrminqd I pr ciféle, these. coefficients can be
uniquely determined by the c procedure of Germano et.al.%, as adapted to the generalized model by

,dy'num
Moin and JimenezS. ‘We briefly describe the proceduré below.

It is now assumed that the subtest stresses can also be modeled by Eq 11 with the same coefficients C;;,
in which case
T = (C.,,S‘,,, + C,,.B,,,)P[S; (13)

(In the author’s opinion, this assumption represents a consnderﬁiﬁkﬁp’of faith, given that 7;; and T;; are
not formal twins.) From Eqs. 7, 11, and 13, a set of mt.egral equations for the coefficients C;; follows, namely

2Ly~ (Cikalq + Cinani = Cuﬁbj - thﬂh) (14)

where

a;; = 2!"3‘3‘, (15)
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We now exploit the Taylor-series expansion of the test filter to obtain a simple approximation to Eq. 14.
For specificity, we use the filter of Eq. 1 and its expansion Eq. 2. Omitting details for brevity, we obtain the

. appromm.ptxon

2Li; % (r? = 1) (CaBj + C,,,ﬁ,,.) +2L.0.E. + O(1?A?) = 2(r? - 1)1'., +2L.0.E. + O(I’A’) (16)

where the leading-order error (L.O.E.) term in A is given by

__é 9 8Ps; 8Bri) _ (OCixBs; ac'jkﬂke)

LO.E.= -5 [r (C Sl + O az) ( 5+ =5 (7)

We concl;;de that : I
Tij & rfi"l I;JOE +0(*AY) L . (18)

‘We now assume that the highest order term is insignificant. It remains to show that the second term
(L.O.E.) on the right-hand side of Eq. 18 is of lesser significance (on average) than the first. We assume
here that all quantities have been previously scaled by appropriate reference values, so that we are dealing
only with dimensionless quantities. It particular, lengths have been scaled by the wavelength of the largest
eddies, and time has been scaled by the large-eddy turnover time. From Egs. 8 and 2, to leading order in
A, the resolved turbulent stresses are given by

wEEE) e

In scaled nnables, on the basis of reasonable assumptions and approximations (omitted for brevity), it can be
argued that the L.O.E. above is relatively unimportant whenever the dimensionless frequency = Doy <<l
(provided the filter is of first- or second-order, as will be shown). Specifically, for example, if 2.’ % 0.1, an
entirely reasonable value in practice, then, Eq. 18 is approximated simply as

Lij
i R o -f 1 (20)

Remarkably, Liu et al.” arrive at a result similar to Eq. 20 from experimental measurements in a turbulent
jet. Specifically, they obtain several components of the SGS stress tensor of a jet by two-dimensional
particle velocimetry. Whereas eddy-viscosity closures correlate poorly with the measured residual strm
the resolved stresses correlate well. They propose the simple stress-similarity model

Tij = CL.C.',' (21)

where the coefficient ¢ is empirically derived. For r = 2, they obtain ¢, = 0.45 £ 0.15 for a “clipped” (no
backscatter) SGS model by matching the exact and modeled SGS dissipation rates. For a model without
clipping the optimal coefficient is approximately unity (Meneveau, personal communication). Either way,
their result corroborates our observation that the residual and resolved turbulent stresses should be highly
correlated.

The implications of our present results for the practice of dynamic SGS modeling are both troubling
and hopeful. Because the effects of numerator and denominator of the modeled residual stresses essentially
“cancel” in the present analysis, dynamic SGS models, viewed in the present light, are ultimately independent
of the form of their underlying model (whether Smagorinsky or otherwise)! This unanticipated result suggests
that the whole concept of dynamic modeling needs re-examination.

In hindsight, it appears to the author that the basis of dynamic models in the Germano identity is
fundamentally flawed. The Germano “identity” is actually tautological, having been derived simply by
regrouping and renaming certain quantities from the starting point #;; = #;;. This is not to say that the idea
of dynamic modeling is flawed, only that there is no necessity for the Germano identity, as will be shown.
Moreover, not only is the Germano identity unnecessary, it results in the practical difficulty associated with
the vanishing denominator of the model coefficient.



4 Alternate Applfoachﬂ to Dynamic Modeling

In light of the discussion above, it is natural to ask: Can the residual stresses be modeled by the resolved
turbulent stresses without appealing to the Germano identity? - - ' _

By applying the general Taylor expansion Eq. 3 to Eq. 6, we obtain 7
= (¢} = 2e)uiujA? + (c1e2 - 3c3)(u:u" +uju)A? + HO.T. (22)

where H.O.T. denotas lugher order terms. Because the SGS-stresa tensor 7:; arises solely from the quadratic
nonlinearity of the NS equations, it is quadratic at leading order in A, provided that the filter is of either
first- or second-order. On the other hand, if the filter is of order n > 2, then 7;; is of leading order n. Because
the Smagorinsky model is of second-order in ! (or equivalently, in- A}, it can be concluded immediately from
Eqs. 10 and 22 that the model is appropriate only in the context of first- or second-order filters. Moreover,
the use of Smagorinaky-based SGS models is: totally inconsistent. with spaetral filters (which as we have said
previously, can be considered of infinite ordér). This conelusion should hold regardless of whether filtering
is accomplished in space or in-the time domain. Our results msuppa'tedisymcpenmml evidence. Liju
ot al.7 find high correlations between 1;; and £,y when filtering:is accomplished consistently with either
Gaussian or phiysical-domain top-hat filters (both of which are Srst-order in our terminology). On the other
hand, negligible correlations exist when a sharp cut-off filter is used in Fourier space (i.e., a spectral filter in
our termmology)

Of fundamental importance in dynamic models i is E& regojved turbulent stress tensor Ci; (Eq. 8). As
mentioned previously, the resolved turbulent stresses can bé directly computed by filtering the resolved
velocity fields @;. Let ua now expand £;; analogously to Eq. 22 above. To this end, we presume that the
grid and test filters differ only in their respective ﬂ.lter widths; More precisely, if the grid filter is defined by
Eq. 3, then the test filter is defined by o

a(t,8) = F [u(t,2),A] =u+a(ra)’ + cz(}A)%" +es(rA)Pu + .. (23)
with the same coefficients ¢; as in Eq. 3. From Eqs; 3,8, aﬁd 23, and with the aid of Mathematica, it follows

that
' &;=(6%-2ez)uﬁs§(ré)‘ #{drh= 200 + oiegr< Sogr')(uiuf +uju))A® +HOT.  (24)

From compa.nsons of Eq. 22 and Eq. 24, we oonclude that the SGS;stresa&es can be appronmated to leading
order by the resolved stresses scaled by r2; that is, o ,

Tij %l (25)
" How. good is the apprmnmatmn’hti_hwatmn arror E hedeﬁned .
|  Bysm-d , (@)
From Eqs. 22 and 24, we obtain
. 7 [3c3(r -1 +acd-r)-d) A"’(uﬁu” +4; jui) + HO. .T. ' 2
From Equ ‘22 and 27, we immedlately conclude the followmg

1 If the filter is of ither first- or second-order in A, then the approximation error is of higher order (3)
- than is the-SGS: stress (2), and the appradmmn is likeb! to be remnably accurate (gim a&stmnal
constraints to be addressed shortly). =

) 2, On the other hand, for any ‘Blter of order n ,>, 2, ,t,hgfaiiproximation error is of the same order as 7
itself: hence, 7 is likely to vanish in the noise of the approximation.




3. If the filter is of order two (c; = 0.0, c2 # 0.0) then
E;j = 3c3(r — 1) A% (ujuf + ujul) + H.O.T. - (28)
4. Far from being inadmissible, as implied by the conventional dynamic modeling approach, r = 1 is
"~ optimal for second-order filters in that the leading error term vanishes.

... 5. Because the residual stresses can be approximated directly from the resolved turbulent st.resm, the
Germano identity is unnecessary for the development of dynamic SGS models.

5 Discussion

Although, for brevity, the present results were derived using time-domain filtering, similar results copld
have been obtained for spatial filtering, albeit by more arduous mathematics. For example, Eq. 19 is the
time-filtered analog to the space-filtered result of Clark et al. 3 as interpreted by Spezialell, who reports that

cy= 55 (B2) () + 0@ R

Although Eqs 20 and 25 are similar and in reasonable agreement for moderately large r, t.hey are not
identical. Whence the difference? Because the former originates from the Germano identity and the ,la;ter
explicitly avoids it, we speculate that the discrepancy follows from the assumption that 7;; and T;; of Eq. 7
can both be modeled by formally identical models, despite some formal dissimilarity.

If both analysis and experiment conclude that the residual stresses correlate closely with the {(ocdm-
putible) resolved stresses, then it is tempting to suggest for LES the use of SGS models that contain only
scale-similarity terms. However, it is well known (e.g., Liu et al.7), that scale-similarity models alone‘are in-
sufficiently dissipative, and such calculations are almost guananteed to blow up, particularly if the numerical
scheme is non-dissipative. Our interpretation of the situation is as follows: the SGS models of LES must
unfortunately play two roles: one physical and one mathematical. Whereas scale-similarity models appear
sufficient to capture the physics of SGS energy transfer, additional dissipation (e.g., a Smagorinsky-like term)
is necessary for mathematical reasons; i.e., to stabilize the numerical scheme whenever resolution is marginal.
These roles are somewhat separated by mxxed models (e.g Bardina?), which include both scale-sunﬂarity
and dissipative terms.

Although our results are completely consistent with the experimental results of Liu et al.7, they are
only partially consistent with the DNS results of Piomelli et al.%, whose a priori tests show good agreement
between modeled and exact stresses both for a mixed;model with a Gaussian filter and for the Smagorinsky
model with a sharp cut-off filter. Whereas the former regult is consistent with our findings, the latter is not.
“However, as Piomelli et al.? are careful to point out: “The fact that the SGS stress is essentially zero when
the cutoff filter is used on the present [DNS) grid indicates that, with that filter, the grid may be capable of
resolving the Reynolds stress and no model is needed.™ Thus, the inconsistency may be more apparent than

actual. We are currently conducting a priori tests to further validate our present analysis.

6 _Conclusions

1. Mathematically tautological, the Germano 1dent1ty is suspect as a basis for dynamic SGS modehng

2. A practical difficulty with dyna.mxc SGS modelmg manifested in the vamshmg denominator of the
model coefficient, is directly attributable ta the use of the Germano identity.

3. The Germano identity is not only problematlc, it is an unnecessary basis for dynamic SGS models

4. For first- or second-order filter operators, the computible resolved turbulent stresses, when properly
scaled, closely approximate the residual stresses, without appeal to the Germano identity.



5. In general, filters of higher than second order are inconsistent with the Smagorinsky SGS model.
6. In particular, spectral ﬁlters are inconsistent with the Smagorinsky SGS model.

7. In LES, the SGS model plays two roles: one phymcal and one mathematical. To separate these roles,
mixed models should be exploited. In mixed models, the scale-similarity term captures the physics
and the dissipative term prevents numenca.l mstabmty Common experience with LES reveals that the
scale-similarity term alone is insufficient.

'8. The scaling of the scale-sitiilasity term of mixed models:should depend on the choxoe of the parameter
r relating grid and test filter widths. This has been overlooked in practice.

9. A new model for the dissipative term, directly based on the computible resolved turbulent stresses, is
sorely needed.
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